(экстенсиональности) (от лат. extentio — протяжение) — принцип теории множеств, суть которого в том, что два множества (класса), состоящие из одних и тех же элементов, равны (совпадают, являются равнообъемными). Применительно к логике П. о. можно сформулировать так: два предиката (свойства, отношения, понятия) могут быть отождествлены друг с другом (являются неразличимыми в определенном смысле), коль скоро они имеют один и тот же объем. Так, множества, соответствующие предикатам (и соответствующим им понятиям) «равносторонние прямоугольники» и «равноугольные ромбы», одни и те же: они представляют собой множество квадратов. Эти понятия можно отождествлять между собой, сделать неразличимыми в отношении доказательства теорем. В классической логике широко используется этот принцип. Но в опытных науках П.о. постоянно нарушается: приходится различать равнообъемные понятия по свойствам, которые в них зафиксированы. Эти свойства могут быть существенными и несущественными, более существенными и менее существенными для решения различных задач. Так, два понятия - «животное, способное производить орудия труда» и «животные, обладающие мягкой мочкой уха» - равнообъемны: они выделяют, специфицируют один и тот же класс - класс людей. Но во многих случаях мы не можем их отождествлять, напр., когда пытаемся дать определение человека как общественного существа. Из двух определений «Чело- век есть животное, способное производить орудия труда» и «Человек есть животное, обладающее мягкой мочкой уха» мы безусловно выберем первое и отвергнем второе.
|